

21st-Century Tools for 19th-Century Nanotechnology: Understanding and Conserving the Daguerreotype

Nicholas P. Bigelow, University of Rochester

Ralph Wiegandt, George Eastman House International Museum of Photography & Film Brian McIntyre, University of Rochester Emily Thompson, Clemson University

2014 AAAS Annual Meeting, 14 February 2014

Research support from the National Science Foundation

Chemistry and Materials Research at the Interface between Science and Art (SCIART)

PROGRAM SOLICITATION NSF 10-534

The Daguerreotype

Louis Jacques Mande Daguerre Jean Baptiste Sabatier-Blot 1844, daguerreotype GEH collections

Daguerreotype

Unidentified Toung Giri: Southworth & Hawes: ca 1850 1/6 plate

Unidentified Young Girl: Southworth & Hawes: ca 1850 whole plate

Daguerreotypes are a very precious record of our history and are intrinsically artistic and cultural objects

Plate 2: two areas of interest imaged at higher magnification.

The clock tower imaged at 15x optical magnification. Based on this micrograph and historic information, the light fell on this plate at 1:55 PM on September 24, 1848.

Daguerreotype Process

- Silver plate over copper substrate: mechanically clad, or electroplated with silver
- Polished to a mirror surface
- Made light sensitive by exposure to iodine and possibly bromine vapor
- Sensitized plate put into camera
- Exposure time variable; dependent on method of sensitization; UV sensitive. Under 10 seconds –latent image of reduced silver halide prints out
- Latent image is "developed" by heated mercury fumes which combine with the reduced silver, forming micron sized light scattering particles
- Plate fixed with sodium thiosulfate
- Fixed image was immediately processed with a gold chloridesodium thiosulfate solution

Daguerreotype magnification comparison: 50X

Enter powerful tools of nanoscience Microscopy, FIB, EDX

Daguerreotype magnification comparison: 1500X

Daguerreotypes are delicate objects

Factors in the condition of the daguerreotype

- Original processing chemistry
- Possibility of coatings/coating residues
- Previous cleaning
- Environmental effects
 - Macroclimate in storage
 - Microclimate of case materials
 - Light exposure
 - What else? What is the object really like chemically, structurally, mechanically????

THE DAGUERREOTYPES OF SOUTHWORTH & HAWES of Southworth & Hawes was to perfect the daguerreotype side the very highest quality portraits to the bustling city's elite. In they adopted the portrait as their principal stock in trade, a they adopted the portrait as their principal stock in many existing the sense was anything but conventional. Unlike many but to apply such principles to their early photography. Seeding a hoge overhead skylight to explore the effects of light owe by refining and polishing the surface of their large scale cardfully point their surface of their large scale cardfully point their subjects amid a few symbolic props, by experimenting with painting the inside of their carmera, white, their profession. their profe heir large whole-plate portraits of such contemporary celebrities heir large whole-plate portraits of such contemporary celebrities Daniel Webster, Lemuel Shaw, Lola Montez, and Henry Wadsworth osgefilow were dramatically poted and boldly modeled. They served the most radical political activities of their day, the fiery abolitionists, and the leading artists and writers of the American Renaissance. They so took remarkable outdoor views of the newly opened Mt. Auburn emetry, American warships in drydock, millitas mustering on the owner Common, and street scenes below their windows. Southworth the senthetic possibilities of the new medium and the burgeoning spirit of the emerging national culture. an Bharback 📕 👹 -Grant B. Romer and Brian Wallis CURATORS NE ANDREAM HERENKOM OF YONG MEERIKANS KEIN GENERADOR FONED IT THE WOLL'E KANETT LUFE & I THERMOLEANDE NOE IT ANN & BOMMIT IN 18, NOE YTTEN LUDMANT / R. 77.

Lola Montez

There are many processes at work:

We need to understand the many degradation modalities and fundamentals

How does the image formation process actually work at a nano-scale?

Do we really understand the daguerreotype?

Since "first light" the daguerreotype carries with it a history not only of its creation, but of its "life"

1/6th Plate format: in half-case, missing lid, appears to have original paper binding intact, never opened

Walter's Bug: It was alive

The plate is populated with many biological fiber-like structures in addition to the insects.

30 X magnification

200 X magnification; dark-field Fibers are engorged with NPs

A remarkable discovery: The daguerreotype surface engages readily with life forms *at the cellular level*

- Hosts and engages with living organisms and the chemistry of life:
- Fungi
- Bacteria
- Plants
- Enzymes
- Proteins
- Nucleic acids
- Cytoplasmic fluids

The observation of biological activity on the daguerreotype surface might seem surprising

The observation of biological activity on the daguerreotype surface might seem surprising

Energy Dispersive X-Ray Analysis (EDX)

Is the bioform processing of metallic nano-particles well known?

Of interest to others?

Important?

Current Research: Technology and Education Topics in Applied Microbiology and Microbial Biotechnology 2010

"Mycofabrication, mechanistic aspect and Multifunctionality of Metal Nanoparticles - Where are we? And where should we go?"

Fungi	Mode of Synthesis	Nanoparticles	Reference	
Verticillium sp.	Intracellular	Au	Mukherjee et al., 2001 [29]	
Fusarium oxysporum	Extracellular	CdS	Ahmad et al., 2002 [30]	
Phoma sp. 3.2883	Intracellular	Ag	Chen et al., 2003 [31]	
Colletotrichum sp.	Extracellular	Au	Shankar et al., 2003 [16]	
Usnea longissima	Extracellular	Usnic acid	Shahi & Patra, 2003 [34]	
Fusarium oxysporum	Extracellular	Zirconia	Bansal et al., 2004 [32]	
Trichothecium sp.	Extra/Intra	Au	Ahmad et al., 2005	
Fusarium oxysporum	Extracellular	Si, Ti	Bansal et al., 2005 [33]	
Fusarium oxysporum	Extracellular	Magnetite	Bharde et al., 2005 [37]	
Verticillium sp.				
Fusarium oxysporum	Extracellular	Ag	Duran et al., 2005 [38]	
Aspergillus fumigates	Extracellular	Ag	Bhainsa & D' Souza, 2006 [34]	
Fusarium oxysporum f. sp. lycopersici	Intra- & Extracellular	Pt	Riddin et al., 2006 [26]	
Verticillium luteoalbum	Intracellular	Au	Gericke& Pinches, 2006 [39]	
Fusarium semitectum	Extracellular	Ag	Basavaraja et al., 2007 [40]	

Aspergillus flavus	Intracellular	Ag	Vigeshwaran et al., 2007 [41]	
Fusarium oxysporum	Extracellular	CdSe quantum da	ots Kumar et al., 2007a [42]	
Fusarium oxysporum	Extracellular	Ag	Kumar et al., 2007b [43]	
Fusarium oxysporum	Extracellular	Ag N	Johammadian et al., 2007 [44]	
Aspergillus niger	Extracellular	Ag	Gade et al., 2008 [24]	
Fusarium acuminatum	Extracellular	Ag	Ingle at al., 2008 [28]	
Trichoderma asperellum	Extracellular	Ag	Mukherjee et al., 2008 [27]	
Penicillium sp. E	xtracellular	Ag	Sadowski et al., 2008 [45]	
Fusarium semitactum E	xtracellular	Au, Au-Ag alloj	y Sawale et al., 2008 [46]	
Helminthosporum solant E	xtracellular	Au	Kumar et al., 2008 [69]	
Phoma glomerata 1	Extracellular	Ag	Birla et al., 2009 [47]	
Fusarium solani I	Extracellular	Ag	Ingle et al., 2009 [48]	
Coriolus versicolor	Extracellular	Ag S	Sanghi and Verma, 2009 [70]	
Cladosporium cladosporio	ides Extracellular	Ag	Balaji et al., 2009 [71]	
Fusarium oxysporum	Extracellular	Pt	Govender et al., 2009 [72]	

The daguerreotype surface has the elemental building blocks for bottom-up self assembling nanostructures

Gold and silver nanoparticles are favored elements for nano bio- engineers in creating selfassembling structures

Biological forms and chemistry can serve as the scaffolding and mechanisms for self-assembled gold and silver complexes

Unstable surface: exfoliation What is the cause of exfoliation?

The gilding of daguerreotypes as nanotechnology fabrication mechanism

Literary Gazette; and Journal of the Belles Lettres, Arts, Sciences, &c. (London) No. 1231 (22 August 1840): 545. This text appears as part of a column under the header: "PARIS LETTER. Academy of Sciences, August 18, 1840."

M. Fizeau communicated a method of fixing photographic impressions obtained with the daguerreotype, by means of a chlorure of gold. The mixture employed was one gramme of chlorure of gold dissolved in half a litre of pure water (distilled), to be mixed with three grammes of hyposulphite of soda, also dissolved in half a litre of water. The two mixtures to be poured gradually together, and well stirred

The entire gilding process is more complex than originally thought and intrinsically involves gold nanoparticles.

The Gilding Has Many Consequences

Focused Ion Beam Image particle: note subsurface voids beneath the silver plate and beneath the image particle

Large image particle in a dark region of the daguerreotype: not the extended diminuation of silver at the plating interface below the particle; top surface is gold rich

Unprecedented view of the silver substructure of a daguerreotype. The particle becomes more gold rich at the top.

Size comparison with human hair

Localized drop-wise gilding with progressive addition of gold solution during heating "daguerreochips"

Gilding to the extent that the gilding layer delaminated and rolled up

Fib Section of 6

<image>

The daguerreotype as a nanofactory – evolving since "First Light"

Aspect ratio: 50-70 nm diameter: 88microns in length

Nano-fiber is raised from the surface –with sporadic encounter with image particles

Examples of other ongoing studies:

-Plasmonic effects -Light induced change -Cleaning

Daguerreotypes exhibit quantum optical characteristics

- Color in darkfield light microscopy is due to localized plasmon resonance of gold and silver nanoparticles
- This may be a source for natural color effects seen in daguerreotypes

The impact of UV light on the nano structured surface

(left) SEM image of surface not affected by UV light. Scale bar is 200 nm.

(middle) SEM image of surface affected by UV light, showing increase in image particle size. Scale bar is 200 nm.

(right) SEM image of surface affected by UV light. Scale bar is 100 nm. Particle circled shows change in morphology.

Comparison of two surfaces

The nano-structure of the Cornelius plate

The nano-structure of the study plate with the nanofiber

Plate after test cleaning

Plate after the two cleaning processes as indicated.

Electro-cleane

Thiourea cleaned

What do we do now?

- Are there surface intervention treatments that can effectively remove reactive chemistry and retain the original nano-structure of the daguerreotype?
- Are original cases and framing materials effective in preventing the nano-scale reactions as we have see here –for which there is no known scientific rationale for the degradation to not progress.
- Is it possible to slow or halt nano-chemical reactions now –and wait for new science to emerge that may provide better solutions to these critical issues for the preservation of the daguerreotype?

Scientists Were Active in the Story *for example* •William Henry Fox Talbot •William Hayden Wollaston •Étienne Louis Malus

This work gives back to Science And supports Conservation

Science is key to interpreting and conserving art.

Art and its conservation can lead to *new* science and insights that reach beyond the object itself.

