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Goals

♦Brief Overview of Programming Practices
♦Major Pitfalls in Secure Programming
♦Examples (if there is time)
♦Q & A
♦Additional Resources



Credits

♦Many of the areas and concepts of this 
presentation are taken from “Building 
Secure Software” by John Viega & Gary 
McGraw.  I would suggest buying it if you 
are really interested in learning more on the 
subject.



Guiding Principles for Software 
Security
♦ Secure the weakest 

link
♦ Practice defense in 

depth
♦ Fail securely
♦ Follow the principle of 

least privilege
♦ Compartmentalize

♦ Keep it simple
♦ Promote privacy
♦ Remember that hiding 

secrets is hard
♦ Be reluctant to trust
♦ Use your community 

resources



Secure the weakest link
♦ Your system is only as 

secure as the least 
secure component.  
The same is true for 
software.



Practice Defense in Depth
♦ Just as in designing a good 

system, good software 
doesn’t rely on just one 
mechanism to say that it is 
safe.  

♦ You may have 
authenticated, but can you 
trust the user?

♦ The information the client 
sent may not always be 
the information that the 
server receives.



Fail Securely
♦ When your system 

fails, make sure that it 
fails in a secure 
manner.

♦ For authentication, it’s 
guilty until proven 
innocent.



Follow the Principle of Least 
Privilege
♦ Only give the 

privileges that you 
need to get the job 
done

♦ Only keep privileges 
for as long as you 
need them



Compartmentalize
♦ When you are writing 

your code, section it 
off when logically 
possible

♦ This is harder than it 
sounds



Keep it Simple
♦ If software is simple, 

it is much easier to 
check for security

♦ Security should be an 
Opt out, not Opt in 
solution



Promote Privacy

♦Write your software with the user’s privacy 
in mind

♦ If you don’t have to use private data –
DON’T

♦ If possible, only store private data in one 
location.  This makes it easier to verify that 
it is only being used for legitimate purposes



Remember that Hiding Secrets is 
Hard
♦Obfuscation is rarely the best form of 

security
♦When relying on secrets, the crackers 

almost always win



Be Reluctant to Trust

♦Snake-Oil FAQ –
http://www.interhack.net/people/cmcurtin/s
nake-oil-faq.html

♦Don’t even trust yourself.  Make sure to 
have your code reviewed by another person

http://www.interhack.net/people/cmcurtin/snake-oil-faq.html
http://www.interhack.net/people/cmcurtin/snake-oil-faq.html


Use your Community Resources

♦When it comes to most aspects of security, 
don’t think you know more than the rest of 
the world

♦Rely on proven methods and algorithms for 
known problems



Major Pitfalls in Secure 
Programming
♦Buffer Overflows
♦Access Control
♦Race Conditions
♦Randomness & Determinism
♦Applying Cryptography
♦Trust Management & Input Validation
♦Password Authentication
♦Database Security



Buffer Overflows

♦Aleph One, “Smashing the Stack for Fun 
and Profit”
http://www.insecure.org/stf/smashstack.txt

♦Most common source of vulnerability 
according to CERT

http://www.insecure.org/stf/smashstack.txt


Access Control

♦Use umask appropriately
– Values such as 022 (world can read) or 066 

(only owner can read)
♦Use chroot

– Better than nothing, but be sure and drop 
privileges

♦Windows is similar but often more granular



Race Conditions

♦These occur when something must hold true 
for a certain period of time

♦Temp file redirections, moving links are 
examples



Randomness & Determinism

♦Computers are deterministic machines and 
as such have no randomness of their own

♦Make sure that your source of entropy is not 
less random than you need



Applying Cryptography

♦Use it – use it correctly
♦Don’t reinvent the wheel



Trust Management & Input 
Validation
♦Never trust the user to give you the data you 

want
♦Beware of metacharacters such as ; | ../ and 

many others
♦Beware of hex encoding, unicode, or others
♦ If you have taint checking, use it.  If you 

don’t, use it’s principles



Password Authentication

♦Passwords are only as secure as a user 
makes them

♦An 8 character password can be:
– Only lower case letters: 2.08 * 10^11
– Upper and lower case letters: 5.34 * 10^13
– Alphanumeric: 2.18 * 10^14
– All characters available (95): 6.63 * 10^15



Database Security

♦Most databases don’t have encrypted 
channels

♦All former rules apply
♦Statistical attacks may threaten privacy
♦SQL injection attacks can get by many 

defenses.



Additional Resources

♦ http://del.icio.us/dalton42/programming is 
continuously updated.

http://del.icio.us/dalton42/programming
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