
What Programmers Should
Know About Security

University of Rochester
Matthew Dalton, CISSP

Goals

♦Brief Overview of Programming Practices
♦Major Pitfalls in Secure Programming
♦Examples (if there is time)
♦Q & A
♦Additional Resources

Credits

♦Many of the areas and concepts of this
presentation are taken from “Building
Secure Software” by John Viega & Gary
McGraw. I would suggest buying it if you
are really interested in learning more on the
subject.

Guiding Principles for Software
Security
♦ Secure the weakest

link
♦ Practice defense in

depth
♦ Fail securely
♦ Follow the principle of

least privilege
♦ Compartmentalize

♦ Keep it simple
♦ Promote privacy
♦ Remember that hiding

secrets is hard
♦ Be reluctant to trust
♦ Use your community

resources

Secure the weakest link
♦ Your system is only as

secure as the least
secure component.
The same is true for
software.

Practice Defense in Depth
♦ Just as in designing a good

system, good software
doesn’t rely on just one
mechanism to say that it is
safe.

♦ You may have
authenticated, but can you
trust the user?

♦ The information the client
sent may not always be
the information that the
server receives.

Fail Securely
♦ When your system

fails, make sure that it
fails in a secure
manner.

♦ For authentication, it’s
guilty until proven
innocent.

Follow the Principle of Least
Privilege
♦ Only give the

privileges that you
need to get the job
done

♦ Only keep privileges
for as long as you
need them

Compartmentalize
♦ When you are writing

your code, section it
off when logically
possible

♦ This is harder than it
sounds

Keep it Simple
♦ If software is simple,

it is much easier to
check for security

♦ Security should be an
Opt out, not Opt in
solution

Promote Privacy

♦Write your software with the user’s privacy
in mind

♦ If you don’t have to use private data –
DON’T

♦ If possible, only store private data in one
location. This makes it easier to verify that
it is only being used for legitimate purposes

Remember that Hiding Secrets is
Hard
♦Obfuscation is rarely the best form of

security
♦When relying on secrets, the crackers

almost always win

Be Reluctant to Trust

♦Snake-Oil FAQ –
http://www.interhack.net/people/cmcurtin/s
nake-oil-faq.html

♦Don’t even trust yourself. Make sure to
have your code reviewed by another person

http://www.interhack.net/people/cmcurtin/snake-oil-faq.html
http://www.interhack.net/people/cmcurtin/snake-oil-faq.html

Use your Community Resources

♦When it comes to most aspects of security,
don’t think you know more than the rest of
the world

♦Rely on proven methods and algorithms for
known problems

Major Pitfalls in Secure
Programming
♦Buffer Overflows
♦Access Control
♦Race Conditions
♦Randomness & Determinism
♦Applying Cryptography
♦Trust Management & Input Validation
♦Password Authentication
♦Database Security

Buffer Overflows

♦Aleph One, “Smashing the Stack for Fun
and Profit”
http://www.insecure.org/stf/smashstack.txt

♦Most common source of vulnerability
according to CERT

http://www.insecure.org/stf/smashstack.txt

Access Control

♦Use umask appropriately
– Values such as 022 (world can read) or 066

(only owner can read)
♦Use chroot

– Better than nothing, but be sure and drop
privileges

♦Windows is similar but often more granular

Race Conditions

♦These occur when something must hold true
for a certain period of time

♦Temp file redirections, moving links are
examples

Randomness & Determinism

♦Computers are deterministic machines and
as such have no randomness of their own

♦Make sure that your source of entropy is not
less random than you need

Applying Cryptography

♦Use it – use it correctly
♦Don’t reinvent the wheel

Trust Management & Input
Validation
♦Never trust the user to give you the data you

want
♦Beware of metacharacters such as ; | ../ and

many others
♦Beware of hex encoding, unicode, or others
♦ If you have taint checking, use it. If you

don’t, use it’s principles

Password Authentication

♦Passwords are only as secure as a user
makes them

♦An 8 character password can be:
– Only lower case letters: 2.08 * 10^11
– Upper and lower case letters: 5.34 * 10^13
– Alphanumeric: 2.18 * 10^14
– All characters available (95): 6.63 * 10^15

Database Security

♦Most databases don’t have encrypted
channels

♦All former rules apply
♦Statistical attacks may threaten privacy
♦SQL injection attacks can get by many

defenses.

Additional Resources

♦ http://del.icio.us/dalton42/programming is
continuously updated.

http://del.icio.us/dalton42/programming

	What Programmers Should Know About Security
	Goals
	Credits
	Guiding Principles for Software Security
	Secure the weakest link
	Practice Defense in Depth
	Fail Securely
	Follow the Principle of Least Privilege
	Compartmentalize
	Keep it Simple
	Promote Privacy
	Remember that Hiding Secrets is Hard
	Be Reluctant to Trust
	Use your Community Resources
	Major Pitfalls in Secure Programming
	Buffer Overflows
	Access Control
	Race Conditions
	Randomness & Determinism
	Applying Cryptography
	Trust Management & Input Validation
	Password Authentication
	Database Security
	Additional Resources

