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The vision for the University of Rochester’s Laboratory for Laser Energetics: 
The leading academic institution advancing laser technologies, 
fusion, and high-energy-density science at scale

Building S&T and scientists for the future

Innovation Leadership in S&T Education
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2023: FLUX

Innovation at LLE as an example
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The LLNL panel for announcing “Ignition” on 12/13/22 is comprised of 
scientists with a long history of research on Omega

Alex Zylstra
Lead Experimentalist
MIT PhD 2015 (OMEGA)

615 OMEGA
248 OMEGA EP
863 shots

Jean-Michel Di Nicola
Chief Engineer for NIF 
Laser Systems

Michael Stadermann
Program Manager,
Target Fabrication

Art Pak
Team Lead, Stagnation 
Science

69 OMEGA
151 OMEGA EP
220 shots

Tammy Ma
Lead Inertial Fusion 
Energy Institutional 
Initiative 

106 OMEGA
68 OMEGA EP

174 shots

Annie Kritcher
Principal Designer

85 OMEGA shots

Mark Herrmann
Program Director for 
Weapon Physics and 
Design 
LLNL

Panel participants were PI or 
co-PI on 1,342 shots at LLE
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Fusion powers the Earth, keeps the peace, and will be 
sustainable local energy in the future

Department of Energy/
National Science Foundation

National Nuclear Security 
Administration

Department of Energy/
Industry

Fusion “Kitty Hawk:

Prototype: SPARC
Q > 2, Pfusion > 50 MW

~2021 to 2025



6

Why does DOE have three major ICF facilities? Unique roles, 
technical competition, innovation, education, and risk management

Ignition Capable

Indirect-Drive ICF

2100 Shots per year

Direct-Drive ICF

Engineering scale samples

Magnetically Driven ICF
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Applications of high-power lasers

Laboratory Astrophysics Probes and Materials at 
Extreme Conditions

Fusion
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Nuclear fusion is the process by which stars produce energy

Image: NASA Solar Dynamics Laboratory

• Fusion requires very high 
Temperatures (approximately 
10s – 100s of millions of 
degrees)

• Matter under these conditions 
(plasma) is very hard to 
confine

• The Sun’s gravity confines the 
plasma at these very high 
temperatures
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Two approaches are being pursued on OMEGA and the National 
Ignition Facility

Direct-drive couples nearly 4 times more of the laser 
energy onto the capsule than indirect drive

Indirect-drive is less sensitive to the nonuniformity of 
each individual laser beam
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Deuterium and tritium (heavier isotopes of hydrogen) fusion are the 
best studied on laser facilities

Deuterium Tritium++

+ +
(alpha particle)

Deuterium-tritium fusion has the highest reaction probability under the conditions we can achieve 
today on high-power lasers
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Inertial Confinement Fusion (ICF) implodes capsules to develop 
conditions for a robust hotspot and propagating burn resulting in 
“high” neutron yields

Ignition is the process 
In which the alpha particles 
are stopped in the hotspot and
produce more fusion reactions  

laser
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Recent accomplishments: OMEGA, and 
NIF
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Physics-informed data science techniques are leading to significant 
improvements in fusion yields on OMEGA

Measured neutron yield 
vs. time
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Statistical modeling (SM) predictions* 
vs. 

Measured neutron yield
Extrapolated fusion yield 

vs. 
GLC (χno-α)

_______________
*V. Gopalaswamy et al., “Tripled Yield in Direct–Drive Laser Fusion Through Statistical Modelling,” Nature 565 (7741), 581–586 (2019).
**A. Lees et al., “Experimentally Inferred Fusion Yield Dependencies of OMEGA Inertial Confinement Fusion Implosions,” Phys. Rev Lett. 127, 105001 (2021).
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(2.5 kJ)

unstable
high LPI

asymmetric

improved 
stability

HyE/Iraum
(170 kJ)

increased coupling & 
compression
understand 

degradations
better targets

Diamond
(55 kJ)

reduced LPI
reduced fill tube
diamond ablator

improved symmetry

Steady advances in physics understanding and technological 
improvements culminated in target gain G>1 on December 5, 
2022
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From Inertial Confinement Fusion to 
Inertial Fusion Energy
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NIC
(2.5 kJ)

unstable
high LPI

asymmetric High-foot
(25 kJ)

improved 
stability

HyE/Iraum
(170 kJ)

increased coupling & 
compression
understand 

degradations
better targets

Diamond
(55 kJ)

reduced LPI
reduced fill tube
diamond ablator

improved symmetry

Steady advances in physics understanding and technological 
achievements culminated in G >1 on December 5, 2022

National Academy of Sciences 2013: “The appropriate time for the establishment of a national, coordinated, 
broad-based inertial fusion energy program within Department of Energy would be when ignition is achieved”
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Fusion reactions have the highest energy density among all energy 
sources

Deuterium Tritium++

+ +
(alpha particle)

1kg of                                              Energy, kwh

Coal                                              8
3 
Uranium fission                        24 Million 
(current nuclear 
power plants) 

Deuterium-Tritium fusion        95 Million

3 MillionX

4X
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• Available 24/7

• Environmentally acceptable

• Passively safe (can be 
placed close to urban 
centers)

• Abundant deuterium supply
－globally dispersed

• Minimal proliferation 
concerns 

Energy products : electricity, transportation fuels (H2, Biofuels), heat, H2O production, industrial needs 

By 2050, ~ 70% of the global population 
will be urbanized*. Currently, energy is 
produced far from population centers
• Fires caused by transmission lines
• Cost of power includes generation and 

transmission
• Grids are sensitive to cyber attack and 

disruptions 

Fusion energy can be clean, carbon-free, on-demand, and placed 
close to population enters

* UN: 2018 Revision of World Population Prospects

Fission - Fukishima, 2011
Meltdown, Proliferation fears

Solar/Wind – Intermittent, 
Need better battery technology & robust grid

Fusion Energy
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An IFE power plant has many aspects that need development

ModularitySchematic of an IFE plant
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Efficiencies at every step of power generation require ηdG>~10 with 
implosions performed at the rate of approximately 10/s

Driver
(efficiency ηd)

Electricity 
Generator

(efficiency ηth)

(Target 
gain G)

Ed = ηdEin Efus= GEd

Ein = (1-f) ηthGEd

Egrid = 
fηthGEd

• Increase Gain by controlling various sources of nonuniformity and better physics modeling 

• Increase driver efficiency through new drivers – solid-state lasers, excimer lasers, heavy-ions.
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Many engineering challenges need to be addressed for Inertial 
Fusion Energy
• Radiation flux and first wall survivability
－ High average neutron wall loads (~MW/m2)  and pulsed (~10 

HZ) with high peak power loading
－ Several chamber concepts have been developed

- Thick liquid wall
- Wetted wall
- Protective gas
- Vacuum

• Tritium engineering/science
− High-gain IFE targets will burn up ~30% of the fuel
− Tritium breeding, recovery
− blanket, chamber 
− Economics [breeding, recovery (blanket and chamber)]

1 J. Alvarez et al “Potential common radiation problems for 
components and diagnostics in future MFE and ICF 
devices,” Fusion Engineering and Design 86 (2011)
2 W.R. Meier, A.M. Dunne, et al “Fusion Technology Aspects 
of IFE (LIFE),” Fusion Engineering and Design 89 (2014) 
3 M. Dunne et al “Timely Delivery of  of Inertial Fusion Energy 
(LIFE)” Fusion Science and Technology,” 60 (2014)
4 J.D. Sethian et al “The Science and Technologies for 
Fusion Energy with Lasers and Direct Drive Targets,” IEEE 
Trans on Plasma Science 38 (2010)
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Significant progress in policy and legislation is already reducing the 
uncertainty in the fusion energy landscape and lowering barriers to 
entry by private entities

US Innovation to Meet 2050 
Climate Goals; 
Five priorities outlined 
by The White House (Nov 2022) 

Reducing regulatory 
Uncertainty 
(April 14, 2023) 
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Private-public partnerships will be critical to explore the many paths 
towards fusion energy and identify the optimal concept
• Nearly 20+ private companies are exploring fusion energy globally (6 are pursuing Inertial Fusion Energy) 

• Each company is pursuing a different approach

Figure by Sam Wurzel (ARPA-E) [via Scott Hsu (Office of the Undersecretary of Science, DoE)]

May 31, 2023
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Direct Drive is the most efficient approach but new lasers are needed –
LLE is on the verge of demonstrating a break through in performance

FLUX
(Fourth-generation Laser for Ultrabroadband eXperiments) 

Physics requirement Specification

Central wavelength 351 nm (3𝝎𝝎)

Fractional bandwidth 
∆𝝎𝝎/𝝎𝝎𝟎𝟎

1.5%

Pulse duration/shape 1.5 ns/flat in time

Energy 150 J

On-target power 0.1 TW

Far-field size
Focusable to 100 𝝁𝝁m

(with distributed phase 
plates)

On-target intensity 1015 W/cm2
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Meliora
Questions?
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