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Figure 5.4.9 The continuation play of the equilibrium for the repeated game.
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Player 1's deviation to & must then be followed by a continuation path giving player
2 a payoff of at least 11/2. A symmetric argument shows that the same must be true
for player 3 after 1's deviation to E. However, there is no stage-game action profile
that gives players 2 and 3 both at least 11/2. Hence, if player | is ever to play A,
then deviations to B and E must lead to different continuation paths—the equilibrium
strategy cannol be agent simple. Finally, playver 1's choice of A gives payoffs of
(1, 5, 5), a feat that is impossible if 1 confines himself to choices in {8, C, D, E}. The
payofls provided by this equilibrium can thus be achieved only via strategics that are
not agent simple.

_-_Djmamic Games: Introduction

This section allows the possibility that the stage game changes from period to period
for a fixed set of players, possibly randomly and possibly as a function of the history
of play. Such games are referred to as dvmramic games or, when stressing that the stage
game may be a random function of the game's history, stochastic pames,

The analysis of a dynamic game typically revolves around a set of game states
that describe how the stage game varies from period to period. Unless we need to
distinguish between game states and states of an antomaton (qutomaton states), we
refer to game states simply as states (see remark 5.5.2). Each state determines a stage
game, captured by writing payoffs as a function of states and actions. The specifi-
cation of the game is completed by a rule for how the state changes over the course
of play.

In many applications, the context in which the game arises sugpests what appears
to be a natural candidate for the set of states. It is accordingly common to treat
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the set of states as an exogenously specified feature of the environment, This sec-
tion proceeds in this way. However, the appropriate formulation of the set of states
is not always obvious. Moreover, the notion of a state is an intermediate conven-
tion that is not required for the analysis of dynamic games. Instead, we can define
payoffs directly as functions of current and past actions, viewing states as tools for
describing this function. This suggests that instead of inspecting the environment and
asking which of its features appear to define states, we begin with the payoff func-
tion and identify the states that implicitly lie behind its structure. Section 5.6 pursues
this approach, With these tools in hand, section 3.7 examines equilibria in dynamic
garmes.

551 The Game

There are n players, numbered I, ..., n. There is a set of states 5, with typical state 5.
Playeri has the compact set of actions 4; C ¥, for some k. Player i's payoffs are given
by the continuous function w; ; § % A — R. Because payoffs are state dependent, the
assumption that A; is state independent is without loss of generality: If state s has
action set A7, define A; = [, A] and set ii;(s, a) = w;(s, a*). Players discount at the
commeon rate 4§,

The evolution of the state is given by a continuous transition function g : 5§ x A
U &} — A(S5), associating with cach current state and action profile a probability
distribution from which the next state is drawn; g{&) is the distribution over initial
states. This formulation captures a number of possibilities. If 5 is a singleton, then we
are back to the case of a repeated pame. If (s, a) is nondegenerate but constant in
a, then we have a game in which payoffs are random variables whose distribution is
constant across periods. If § = {0, 1, 2, ...} and g (¢, @) puts probability one on $i41,
we have a game in which the payoft function varies deterministically across periods,
independently of behavior.

We focus on two commeon cases. [n one, the set of states § is finite. We then let
g5 | 5, a) denote the probability that the state ' is realized, given that the previous
state was 5 and the players chose action profile a (the initial state can be random in this
case). We allow equilibria to be either pure or, if the action sets are finite, mixed. In
the other case, A, and § are infinite, in which case § © B™ for some m. We then take
the transition function to be deterministic, so that for every s and a, there exists 5 with
gis' |5,a) =1 and g(s” | 5. @) = 0 for all s” # s’ (the initial state is deterministic
and given by s in this case). As is common, we then restrict attention to pure-strategy
equilibria,

In each period of the game, the state is first drawn and revealed to the players, who
then simultaneously choose their actions, The set of period ¢ ex ante histories ' is
the set (S x A)'. identifying the state and the action profile in each period.'” The
set of period t ex post histories is the set #7 = (§ x A) x §, giving state and

17. Under the state transition rule g, many of the histordes in this set may be impossible. If so, the
specification of behavior at these histories will have no effect on payoffs,
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Figure 5.5.1 Payoff functions for states | and 2 of a dynamic game
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effort in only one state reduces the equilibrium continuation value, and hence

requires more patience to sustain effort in the other state.'®
L

Remark Repeated games with random states The previous example illustrates the special
5.5.1 case inwhich the probability of the current state is independent of the previous state

and the players® actions, that is, g(s | 5", a") = g{s | 5", a") = g(s). We refer to
such dynamic games as repeated games with random states. These games are a par-
ticularly simple repeated game with imperfect public monitoring (section 7.1.1).
Player i's pure action set in the stage game is given by the set of functions from
& into A;. and players simultaneously choose such actions. The pure-action pro-
file o then gives rise to the signal (s, oy(s), .. .. @,(s5)) with probability ¢(s), for
each s € 8. Playeri's payoff u; (5. a) can then be written as w, (5, &_; (5)), a; (5)),
giving i's payoft as a function of i's action and the public signal. We describe a

simpler approach in remark 5.7.1.
*

5.5.2 Markov Equilibrium

In principle, strategies in a dynamic game could specify each period’s action as a
complicated function of the preceding history. It is common, though by no means
universal, to restrict attention to Markov strategies:

Definition |+ The strategy profile o is a Markov strategy if for any two ex post histories h
5.5.2

and h* af the same lengeh and terminating in the same state, aih’) = r:r{ﬁ’}.
The sirategy profile o is a Markov equilibrium if o is a Markov strategy profile
and a subgame-perfect equilibrivm.

2. The strategy prafile o ix a stationary Markov strategy if for any two ex post
histories ' and B { af equal or different lengths) terminating in the same state,
a(h') = o (h¥). The strategy profile o is a stationary Markov equilibrium if o
ix a stationary Markov strategy profile and a subgame-perfect equilibrium.

It is sometimes useful to reinforce the requirement of subgame perfection by referring
to a Markov equilibriom as a Markov perfect equilibrium, Some researchers also refer
to game states as Markov states when using Markov equilibrium {but see remark 3.5.2).
Markov strategies ignore all of the details of a history except its length and the
current state. Stationary Markov strategies ignore all details except the current state.
Three advantages for such equilibra are variously cited. First, Markov equilibria
appear to be simple, in the sense that behavior depends on a relatively small set of
variables, often being the simplest strategies consistent with rationality. To some,
this simplicity is appealing for its own sake, whereas for others it is an analytical or
computational advantage, Markov equilibria are especially common in applied work. !

18, In contrast to section 5.3, we face here one randomly drawn game in each period, instead of both
games.

19. It is not true, however, that Markov equilibria are always simpler than non-Markov equilibria.
The prool of proposition |8.4.4 goes to great kengths to construct a Markov equilibrium featuring
high effort, in a version of the product choice game, that would be a straightforsard calculation
in non-Markowv strategies.
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Second, the set of Markov equilibrium outcomes is often considerably smalle;
than the set of all equilibrium outcomes. This is a virtue for some and a vice for others,
but again contributes to the popularity of Markov equilibria in applied work.

Third, Markov equilibria are often viewed as having some infuitive appeal for
their own sake. The source of this appeal is the idea that only things that are “payvoff
relevant” should matter in determining behavior. Because the only aspect of a history
that affects current payoff functions is the current state, then a first step in impmin;g
payoff relevance is to assume that current behavior should depend only on the curren;
state.”” Notice, however, that there is no reason to limit this logic to dynamic games,
It could just as well be applied in a repeated game, where it is unreasonably restrictive,
because nothing is payoff relevant in the sense typically used when discussing dynamic
games. Insisting on Markov equilibria in the repeated prisoners' dilemma, for example,
dooms the players to perpetual shirking. More generally, a Markov equilibrium in
a repeated game must play a stage-game Nash equilibrium in every period, and a
stationary Markov equilibrium must play the same one in every period.

Remark Three typesof state We now have three notions of a state to juggle, One is Markoy

5.5.2 srare, an equivalence class of histories in which distinctions are payoff irrelevant.
The second is game state, an element of the set § of states determining the stage
game inadynamic game. Though itis often taken for granted that the set of Markov
states can be identified with the set of game states, as we will see in section 5.6,
these are distinct concepts. Game states may not always be payoff relevant and,
maore important, we can identify Markov states without any a prion specifica-
tion of a game state. Finally, we have aqutomaton stares, states in an automaton
representing a strategy profile. Because continuation payoffs in a repeated game
depend on the current automaton state, and only on this state, some researchers
take the set of automata states as the set of Markov states. This practice unfortu-
nately robs the Markov notion and payoff relevance of any independent meaning.
The particular notion of payoff relevance inherent in labeling automaton states
Markov is much less restrictive than that often intended 1o be captured by Markov
perfection. For example, Markov perfection then imposes ro restrictions beyond
subgame perfection in repeated games, because any subgame-perfect equilibrium
profile has an automaton representation, in contrast to the trivial equilibria that
appear if we at least equate Markov states with game states.

*

553 Examples

Example Suppose thai players 1 and 2 draw fish from a common pool. In each period
5.5.2 1, the pool contains a stock of fish of size 5 € R.. In period 1, player i extracts

af = Dunits of fish, and derives payoffIn(a]) from extracting af 2! The remaining

20 If the function w(s,a) is constaml over some values of 5, then we could impose yet further
resiriclions.

21. Wemusthavea] +ay = 5 We can model this by allowing the players 1o choose extraction levels
&‘l and &5, with these levels realized if feasible and with a rationing rule otherwise determining
realized extraction levels. This constraint will not play a role in the equilibrium, and so we leave
the rationing rule unspecified and treat af and a; as identical.
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(depleted) stock of fish doubles before the next period, This.gi\-'n:f.; m.iynamic game
with actions and states drawn from the infinite set [0, oo), identifying the c:ur['e:nt
quantity of fish extracted (actions) and the current stock of fish [.‘:t:!te.sl}. and u.utlh.
the deterministic transition function '+ = 2(s' — a} — a}). The initial stock is
some value 5.
ﬁm‘;’::ii:“:alculnu a stationary Markov equilibrium of this game. in which the
players choose identical strategies. That is, although 1.“ assume that :I:u: pla}rml‘s
choose Markov strategies in equilibrium, the result is a strategy profile that is
optimal in the full strategy set—there arc no supe:rifbr slrateglcs.l Maﬂ_m*-' or mh-.
erwise. We are thus calculating not an equilibrium in the game in whnch.[;.riagzrm
are restricted to Markov strategies but Markov sirategics that are an equilibrium
ame.
. t':;:“r:si-iman to Markov strategies allows us 10 inl:gdgcc a function Vs)
identifying the equilibrium value {conditional on tlmlnquihbnulm sqaxegy profile)
in any continuation game induced by an ex post hiswrP.r endm:-._: in state . Lx:;
g'(s%) be the amount of fish extracted by each player at time f, given the pcm)v:.i
stock 57 and the (suppressed, in the notation) equilihriumlstrntegms, The function
V(s") identifies equilibrium utilities, and hence must satisfy

=5}
Vi) = (18 8 In(g"s"). (5.5.1)
=0

Imposing the Markov restriction that current actions dep.end n.nlj..f on the current
siate, let each player’s strategy be given by a function als} |danufyjpg_ the amount
of fish to extract given that the current stock is 5. We then solve jointly ﬁ?r |i1-c
function Vis) and the equilibrium strategy a(s). First, the on:—_shm devwlton
principle (which we describe in section 5.7.1) allnw; us to characterize th{: function
als) as solving, for any 5 € 5 and for each player i, the Bellman equation,

a(s) € arg max(l — &) In(a) + FV(2s —a—alsh).

aed;

where & is player i’s consumption and the ais) in the ﬁrwf] term captures the
assumption that player j adheres 1o the candidate equilibrium 5trgu:gy. If the
value function V is differentiable, the implied first-order condition 15

{1-—4)
aix)

= 25V'(2(s — 2a(s))).

To find an equilibrium, suppose that ais) is given by a linear ﬁl.1ncﬁ1::!n, 53
that a(s) = ks. Then we have A =20 — sy =201 - 2k)s' . Using this an
als) = ks to recursively replace g'(s) in (5.5.1), we have

L= =]
Vis) = (1 =&)Y 8 In[k2(1 — 26)'s],

f=dl
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and 0 V is differentiable with V'(5) = | J5. Solving the first-order condition

k= (1-8)/(2— &), and so

1 —
als) = -—E.'r

= 1—4 285 4
and Vis) =1 —EJE&' In (——s (—) J
e 2—F5 \2_—5

We interpret this expression by noting that in each period, proportion

P ot gl 0o B
-4 2-45
of the stock is preserved until the next period, where it is doubled, so that the
stock grows at rate 28/(2 — §). In each period, each player consumes fraction
(1 —8)/(2 = &) of this stock.

Notice that in this solution, the stock aof resource grows without bound if the
Players are sufficiently patient (§ = 2/3), though payoffs remain bounded, angd
declines to extinctionif § < 2/3. Asis expected from these types of common pool
resource problems, this equilibrivm is inefficient. Failing to take into account the
externality that their extraction imposes on their partner’s future consumption,
each player extracts too much (from an efficiency point of view) in each perjud..

This stationary Markov equilibrium is not the only equilibrivm of this game.
To construct another equilibrium, we first calculate the largest symmetric payoff
profile that can be achieved when the firms choose identical Markov strategies,
Again representing the solution as a linear function @ — ks, we can write the
appropriate Bellman equation as

e x]
afs) = argmax 2(1 ~ §) In(@) + 8(1 — ) Y 82 In(k(2(1 — 24))'{s — 24)),
aEd;
L Fe=l)

Taking a derivative with respect to @ and simplifying, we find that the efficient

solution is given by
asy = —;ﬁa
As expected, the efficient solution extracts less than does the Markov equilibrium,
The efficient solution internalizes the externality that player i's extraction imposes
on player f, through its effect on future stocks of fish,
Under the efficient solution, we have

,:.'H-I =¥ E.fr(i ok 2-[;—5) = 23,5:,

and hence

s = 28y 50,
The stock of the resource grows without bound if § = 1/2. Nutice also that just
as we earlier solved for Markov strategies that are an equilibrium in the complete

strategy sct, we have now found Markov strategies that maximize total expected
payotis over the set of all strategies.

Example
5.5.3
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We can support the efficient solution as a (non-Markov) equilibrium of the
repeated game, if the players are sufficiently patient. Let strategics prescribe the
efficient extraction after every history in which the quantity extracted has been effi-
cient in each previous period, and prescribe the Markov equilibrium extraction
ais) = [(1 = &)/(2 — &)]s otherwise. Then for sufficicntly large 4, we have an

equilibrium.
L

Consider a market with a single good, produced by a monopoly firm facing a
continoum of small, anonymous consumers. 22 We think of the firm as a long-lived
player and interpret the consumers as short-lived players,

The good produced by the firm is durable. The good lasts forever, subject to
continuous depreciation at rate #, so that 1 unit of the good purchased at time
0 depreciates to e~ units of the good at time ¢, This durability makes this a
dynamic rather than repeated game.

Time is divided into discrete periods of length A, with the firm making a
new production choice at the beginning of each period. We will subsequently be
interested in the limiting case as A becomes very short. The players in the mode
discount at the continuously compounded rate r. For a period of length A, the
discount factor is thus e™2,

The stock of the good in period £ is denoted x (1 ). The stock includes the quantity
that the firm has newly produced in period ¢, as well as the depreciated remnants
of past production, Though the firm’s period ¢ action is the period ¢ quantity of
production, it is more convenient to treat the firm as choosing the stock x(1).
The firm thus chooses a sequence of stocks {x(0), x(1), ...}, subject to x(r) =
e~ xir — 1.7 Producing a unit of the good incurs a constant marginal cost of ¢,

Consumers take the price path as given, belisving that their own consump-
tion decisions cannot influence future prices. Rather than modeling consumers’
maximization behavior directly, we represent it with the inverse demand curve
filx) =1 — x. We interpret j'(x) as the instantaneous valuation consumers attach
to x units of the durable good. We must now translate this into our setting with
periods of length A. The value per unit a consumer assigns to acquiring a quan-
tity x at the beginning of a period and used only throughout that period, with no
previous or further purchases, is

A 2
F(x)= f T e TR
0

= gl q]a.:l L35 (1- e—{r+311?ﬁ:|

Feq r+2n

=d - fx.

2%, For a discussion of durable goods monopoly problems, see Ausubel, Cramton, and Deneckere

{2002). The example in this section is taken from Bond and Samuelson (19584, 1987). The
introduction of depreciation simplifies the example, but is not essential to the resulis (Ausubel
and Deneckere 1959).

23, Because this constraint does not hind in the equilibrium we construct, we can ignore it
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24.

Because the good does not disappear at the end of the period, the period 1 price (ref.
lecting current and future values) given the sequence x(t) = {x{r), x(r + 1), ool
of period 1 and future stocks of the good, is given by

g
pleyx(n) =3 e tWAI B g 5],

sl

The firm’s expected payoffin period ¢, given the sequence of actions x(r — 1) and
x(t), is given by™

=)
¥ (x(m) —x(1 — De™ ") (p(r, X(1)) — c)e~AN,
=t
If the good were perishable, this would be a relatively straightforward intertem.
poral price discrimination problem. The durability of the good complicates the
relationship between current prices and future actions. We begin by secking a
stationary Markov equilibrium. The state variable in period ¢ is the stock x(r — [}
chosen in the previous period. The firm's strategy is described by a function
x(r) = glx(r — 1)), giving the period f stock as a function of the previous period's
stock. However, a more flexible description of the firm’s strategy is more helpful.
We consider a function
gix . x),

identifying the period s stock, given that the stock in period ¢ = 5 is x, Hence, we
build into our description of the Markov strategy the observation that if period t's
stock is a function of period + — 1's, then so is period ¢ + 2's stock a (different)
function of x(z — 1), and so is x{t + 3), and so0 on. To ensure this representa-
tion of the firm’s strategy is coherent, we impose the consistency condition that
gis'. 1, x) = gls', 5, g5, 1, x)) for s’ = 5 = ¢, In addition, g(5 + 7, 5, x) must
equal g(f + 7.1, x) for 5 # ¢, so that the same state variable produces identical
continuation behavior, regardless of how it is reached and regardless of when it
is reached.

The firm’s profit maximization problem, in any period ¢, is 10 choose the
sequence of stocks [x(r), x(r + 13, ..., to maximize

Vix(e),r | x(t — 1))

[= =)
= Zum —xit — e ™) pir, %(1)) — c)e 2ir—1 (5.5.2)
T=r
= Z[.::{r} —x(r— 11e” ™)
=t
o
x ( Zr“mm{a —fgis +r, 1. 2010} — c)e-fﬁ“-”. (5.5.3)
=0

In making the substitution for pit, x(7r}) that brings us from (5.5.2) 1o (5.5.3).
g(s + 7, r, x(7)) describes consumers” expectations of the firm's future stocks and

Matice thar we must specify the stock inperiod . — | becanse this combines with x (1) to determine
the quantity produced and sold in period 1,
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s their own future valuations. To find an optimal strategy for the firm, we differ-
entiate V{x(t), t | x(r — 1)) with respect to xir") for ' = ¢ to obtain a first-order
condition for the latter. In doing so, we hold the values x(t) for T # ¢ fixed, so that
the firm chooses x(7) and x (7'} independently. However, consumer expectations
are given by the function g(s 4+ 1. 7, x(1)), which builds in a relationship between
the current stock and anticipated future stocks that determines current prices,

Fix ' = r = (). The first-order condition o V(x(t). ¢ | x(t — 1)) /dx(1") = 0 is,
from {5.5.3),

[6 — Bx(t) — o[l — e H11Ay)

oa dait’ £ x
— Blx(t) — e MBx(t — 1) e rHns dg(t’ +s5,0',x) it
=0 dx ¥=x{t)

Using x(¢') = g(r', 1, x(1}), we rewrite this as
[¢ = Beit', 1, x(1)) — (] — g~irtmay)
= Bla(t', 1. x(@) — e (1 = 1.1, x(1))]

=] 'l ¢ (]
. [Ee—nﬂm;dﬂf +5.0, g0 -f-I(F}]'}:| —o

dx

=i}
As is typically the case, this difference equation is solved with the help of some
informed guesswork, We posit g(s. . x) takes the form
gis.tx) =%+ p 7 x -5,

where we interpret ¥ as a limiting stock of the good and j2 as identifying the rate
at which the stock adjusts to this limit. With this form for g, it is immediate that
the first-order conditions characterize the optimal value of x{i').

Substitating this expression into our first-order condition gives,

—{r )i = i
!9—{3{1—8 2 ]—ﬁx(l+m)]

s
=1 = p—e -
i {-*—x?'|#+m]—“

Because this equation must hold for all ¢, we conclude that each expression in
braces must be 0. We can solve the second for g and then insert in the first to solve

for X, yielding
1 — &1 — gmirtinla

S e—ir 1A

and

_ [@=c(l = e~ rmay) V1= rrmma

i # (VT — e TFIla 4 | — gmud)’
Notice first that p = 1. The stock of good produced by the monopoly thus
converges monotonically to the limiting stock . In the expression for the limit x,

[ = e(] — g ir+may)

A




is the competitive stock. Maintaining the stock at this level in every period gives
plr. x) = e, and hence equality of price and marginal cost. The term

J1 = g-ir+inia
(1 — e IrFInd 4 | — g—ndy

= y(A,n) (5.5.4)

then gives the ratio between the monopoly’s limiting stock of good and the
competitive stock. The following properties follow immediately from (5.5.4);

¥l n) = 1, (5.5.5)
: oy
q]-lfg.; yla, g =s. (5.5.6)
yia, 0y=1, 5.57)
and
li!_n'}:l}"'[ﬁ.q} =] (5.5.8)

Condition (5.5.5) indicates that the monopoly’s limiting stock is less than that of a
competitive market, Condition (5.5.6) shows that as the depreciation rate becomes
arbitrarily large, the limiting monopoly quantity is half that of the competitive
market, recovering the familiar result for perishable goods,

Condition (5.5.7) indicates that if the good is perfectly durable, then the limiting
monopoly quantity approaches that of the competitive market. As the competi-
tive stock is approached, the price-cost margin collapses to 0. With a positive
depreciation rate, it pays o keep this margin permanently away from 0, so that
positive profits can be earned on selling replacement goods (o compensate for the
continual deprecation. As the rate of depreciation goes to 0, however, this source
of profits evaporates and profits are made only on new sales. It is then optimal to
extract these profits, to the extent that the price-cost margin is pushed to 0.

Condition (5.5.8) shows that as the period length goes to 0, the stock again
approaches the competitive stock, If the stock stops short of the competitive stock,
every period brings the monopoly a choice between simply satisfying the replace-
ment demand, for a profit that is proportional to the length of the period, or pushing
the price lower to sell new units to additional consumers. The latter profit is pro-
portional to the price and hence must overwhelm the replacement demand for
short time periods, leading to the competitive quantity as the length of a period
becomes arbitrarily short.

More important, because the adjustment factor g is also a function of A, by
applying I'Hopital's rule to A~" In u, one can show that

i
.ill-“ﬂ# A = (},
Hence, as the period length shrinks to (), the monopoly’s output path comes arbi-
trarily close 1o an instantaneous jump to the competitive quantity,?3 Consumers

25. At calender time T, T/A periods have elapsed, and 50, as A — 0, x(T/A) = 1.

2.0 m uynamic Lames: Introduction 185

26.

7.

build this behavior intg their pricing behavior, ensuring that prices collapse to
marginal cost and the firm’s profits collapse to 0. This is the Coase conjecture in
action,*®

How should we think about the Markov restriction that lies behind this equilib-
rium? The key question facing a consumer, when evaluating a price. concerns how
rapidly the firm is likely to expand the stock and depress the price in the future,
The firm will firmly insist that there is nary a price reduction in sight, a claim
that the consumer would do well to treat with some skepticism, One obvious place
for the consumer to look in assessing this claim is the firm's past behavior. Has the
price been sitting at nearly its current level for along time? Or has the firm been rac-
ing down the demand curve, having charged ten times as much only periods ago?
Markov strategies insist that consumers ignore such information. If consumers
find the information relevant, then we have moved beyond Markov equilibria.

To construct an alternative equilibrium with quite different properties, let

_[0—c(l —e~rndy)
= T :

This is half the quantity produced in a competitive market. Choosing this stock
in every period maximizes the firm's profits over the set of Nash equilibria of the
repeated game, >’ Now let #°* be the set of histories in which the stock xg has
been produced in every previous peried. Notice that this includes the null history.
Then consider the firm's strategy x(k'), giving the current stock as a function of
the history h*, given by

xR

: Xg, if by € 3%,
xith') = X
git,t — 1, x{zr — 1)), otherwise,
where g(-) is the Markov equilibrium strategy calculated earlier. In effect, the
firm “commits” to produce the profit-maximizing quantity xg, with any misstep
prompting a switch to continuing with the Markov equilibrium. Let o % denote
this strategy and the attendant best response for consumers.

It is now straightforward that o ® is a subgame-perfect equilibrium, as long as
the length of a period A is sufficiently short. To see this, let Uie® | x) be the
monopoly's continuation payoff from this strategy, given that the current stock is
x = xg. We are interested in the continuation payoffs given stock xg, or

[=.u] = 4]
Uia® | xp) = Zﬁ_"“{l - e_"ﬂ}xﬂ( —-c+ Ee'l””“""ﬂxﬂ)

raell 5=
(1= ™)[F(xp) =—c(l — elrtMay]
- (1 — e=rdy(] — g=irtnia)

xXg.

Motice that in examining the limiting case of short time periods, depreciation has added nothing
other than extra terms to the model,

This quantity maximizes [ — fx — (1 — e~ 03 1r and hence is the guantity that would be
produced in cach period by a firm that retained ownership of the good and rented its services (o
the customers. A firm who sells the good can earn no higher profits.
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—esmpes o m vallUONS on the Game
of history.”® Player i 's payoff is a function of the outcome path a € A™. This formu-
lation is sufficiently general to cover the dynamic games of section 5.6. Deterministic
transitions are immediately covered because the history of actions 4" determines the
state 5 reached in period 1. For stochastic transitions, such as example 5.5.1, introduce
an artificial player 0, nature, with action space Ag = § and constant payoffs; random
state transitions correspond 1o the appropriate fixed behavior strategy for player (0. In
what follows, the term players refers to players { = 1, and hisrories include nature's

The key observation now is that

_J_ilTL Uo® | x) > 0.

Even as time Ipcrimjs become arbitrarily short, there are positive payoffs g be
:rl.'fr:h:ll:l},r continually replacing the depreciated portion of the pmfit~n—1aximirin
:,]Iuanm}- Xg- In contrast, as we have seen, as time periods shorten, the r:nntin.u ;
tion payoff of the Markov equilibrium, f ( initi \ .
. ) » Irom any initial stock, Ches i
immediately yields: N o

mMOoves,
Let o be a pure strategy profile and k" a history. Then we write U (= | #') for

playeri’s payoffs given history h' and the subsequent continuation strategy profile o |
This is in general an expected value because future utilities may depend randomly on
past play, for the same reason that the current state in a model with exogenously
specified states may depend randomly on past actions.

Note that U’(= | &') is nor, in general, the continuation payoff from o |. For
example, for a repeated game in the class of chapter 2,

position  There exists A* sup ] L
Pro XISE) such rhat, i A < A, then stratepi rf
% Fia ELies o are a subgame-pe et

This example illustrates that a Markoy restriction can make a great difference j
equilibriug ’ i i
q " outcomes. One may or may not be convineed that a focus on Markoy

equilibria is appropriate. but one cannot rationalize the restriction simply as an

analytical convenience, 3

Ul | &% a',...,a" 1) = Z 8 ui(a") + 8' Ul g1 at-13):
=0

where u; is the stage game payoff and U; is given by (2.1.2). In this case, U= | A')
and U} (e’ | ity differ by only a constant if the continuation strategies o | and '|;,
are identical, and history is important only for its role in coordinating future behavior.

This dual role of histories in a dynamic game gives rise to ambiguity in defining
states. Suppose two histories induce different continuation payoffs. Do these differ-
ences arise because differences in future play are induced, in which case the histories
would not satisfy the usual notion of being payoff relevant (though it can still be criti-
cal to take note of the difference), or because identical continuation play gives rise to
different payoffs? Can we always tell the difference?
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‘l-"-l;ha_n determines the set § of states for a dynamic game? At first the answer SEems
OUVIOUs—slates are things that affect payoffs, such as the stock of fish in exumph:. 55 ;
or the stock of durable good in example 3.5.3. However, matters are : “I
o ! not always so
. d]-:l{-,r ex:mplr:. our formulation of repeated games in chapter 2 allows players 1o
, ondition their actions on a public random variable, Are these realizations slates
::lthcn:'?“;f a dynamic game, and does Markov equilibrium allow behar:iur lul
condinoned on such realizations? Alternatively, conei infini

. ek h n 57 ¥ consider the infinitely repeated
E?m;ncr.\ u.lnlk.-mr.na. I mn.nally appears as if there are no payolf-relevant states .f:mar
: arkov equilibria must feature identical behavior afier every history and h:cncl:e e

: it g
q::at ::; j:erp;tukni bhlrk:ng. Suppase, however, that we defined twor states, an effor
s i shurk state. Let the game begin in the effort star st thep

: ks : e, and remain there as along

as !hcre has bee_n o 5]11rifmg, being otherwise in the shirk state. Now let playvers'
E[;-axeglc.s prescnbe_ effort in the effort state and shirking in the shirk state. We nu';.f

ve a Markov equilibrium (for sufficiently patient players) featuring effort. IAr: these

5.6.1 Consistent Partitions

Let " be the set of period ¢ histories. Notice that we have no notion of a state in
this context, and hence no distinction between ex ante and ex post histories, A period
history is an element of A", A partition of ' is denoted H', and H' (/') is the partition
element containing history &',

A sequence of partitions {H'|72,, is denoted H; viewed as U H', [ is a partition of
the set of all histories .#° = U,.#"". We often find it convenient to work with several
such sequences, one associated with each player, denoting them by H,, .. ., H,. Given

states real, or are they a sleight of hand?
e izlge m:ralt :c can define payoffs for a dynamic game as funciions of current and
1ons, without resorting to the idea of a state. As a result. ; i
‘ | : stafe. L it can be misleadi
think of the set of states as bein i d e
. g exogenously given, Instead, if we would lik
; ; i e to work
w-uh the notions .ct payoff relevance and Markov equilibrium, we must endogenously
infer thf: appropniate set of states from the structure of payoffs ’ ;
- This Section pursues this notion of a state, following Maskin and Tirole (2001
examine 4 game with players | n. Each i o
oAt ; ayers 1., n. player i has the set A; of stage-game
dctions available in each period. Hence, the set of feasible actions is u_g;iu im:;lfpcrfdml

such a collection of partitions, we say that two histories i' and A" are i -equivalent if
ht e HI(h').

A strategy a; is measurable with respect to H; if, for every pair of histories A and
B with h* € H (A", the continuation strategy ;| equals o | ;.. Let I; (H) denote the
set of pure strategies for player § that are measurable with respect to the partition H.

28, If this were not the case, then we would first partition the set of period ¢ histories # into subsets
that feature the same feasible choices for each player § in period ¢ and then work throughout
with refinements of this partition, to ensure that our subsequent measurability requirements were

feasible.



A collection of partitions {H}, ..., H 172, is consistent if for every player ;.
whenever other players strategies o_; are measurable with respect to their partition,
then for any pair of i-equivalent period ¢ histories &' and A’ plaver { has the same
preferences over ¢ 's continuation strategies, Hence, consistency requires that for any
player i, pure strategies o; € E;(H;) for all j # i, and i -equivalent histories &' ang
h', there exist constants & and A = 0 such that

Ulllei, a_i) | k') = 8 + BU (o7, a-;) | k).

If this relationship holds, conditional an the (measurable) strategies of the other players,
i"s utilities after histories &' and k' are affine transformations of one another, We
represent this by writing

UF (o) | ') ~ UM o) | ), (5.6.1)

We say that two histories &' and h', with the property that player i has the same
preferences over continuation payoffs given these histories (as just defined) are .
payoffl equivalent. Consistency of a partition is thus the condition that equivalence
(under the partition) implies payolf equivalence.

The idea now is to define a Markov equilibrium as a subgame-perfect equilibrium
that is measurable with respect to a consistent collection of partitions. To follow this
program through, two additional steps are required. First, we establish conditions
under which consistent partitions have some intuitively appealing properties. Second,
there may be many consistent partitions, some of them more interesting than others,
We show that a maximal consistent partition exists, and use this one to define Markov
equilibria,

5.6.2 Coherent Consistency

One might expect a consistent partition to have two properties. First, we might expect
players to share the same partition. Second, we might expect the elements of the period
partition to be subsets of partition in period t — 1, so that the partition is continually
refined. Without some additional mild conditions, both of these properties can fail.

Lemma Suppose that for any players i and j, any period 1, and any i - -egquivalent histories

56.1 h'and h', there exists a repeated-game strategy profile o and stage-game actions
aj and a such that

U (o) | (k' a)) 7 UF (G o) | (R, al)). (5.6.2)

Then if (Hy, ... Hy ) is a consistent collection of partitions, then in every period i
and for all plavers i and j, H! = H':

The expression U ((a;, a_;) | (h', a;)) gives player i’s payoffs, given that 4' has
occurred and given that player § chooses aj in period t, with behavior otherwise
specified by (a;. r.-_.] Condition (5.6.2) then requires that player i 's preferences, given
(h',a;) and (', ' ). not be affine transformations of one another.
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Proof Let &' and &' be i-equivalent. Choose a player j and suppose the strategy profile

o and actions a; and @ satisfy (5.6.2). We suppose A" and h' are not j-equivalent
{and derive a contradiction). Then player j's strategy of playing as in o, except
playing a; after histories in H; (k') and a, after histories in H;(h') is measurable
with respect to H ;. But then (3.6.2) contradicts (3.6.1): Player i s partition is not
consistent (condition (5.6.2)), as assumed (condition (5.6.1)).

L

To see the argument behind this proof, suppose that a period ¢ arrives in which
player i and j partition their histories differently. We exploit this difference to construct
a measurable strategy for player § that differs across histories within a single element of
player i's partition, in a way thar affects player i ‘s preferences over continuation play.
This contradicts the consistency of player i s partition. There are two circumstances
under which such a contradiction may not arise. One is that all players have the same
partition, precluding the construction of such a strategy. This leads to the conclusion
of the theorem. The other possibility is that we may not be able to find the required
actions on the part of player j that affect i's preferences. In this case, we have reached
a point at which, given a player i history k' € H;(#"), there is nothing player j can
do in period ¢ that can have any effect on how player § evaluates continuation play.
Such degeneracies are possible (Maskin and Tirole, 2001, provide an example), but
we hereafter exclude them, assuming that the sufficient conditions of lemma 5.6.1 hold
throughout.

We can thus work with a single consistent partition H and can refer to histories
as being “equivalent” and “payoff equivalent” rather than i-equivalent and i-payoff
equivalent.

We are now interested in a similar link between periods.

Lemma Suppose that for any plavers | and §, and_;wr:’ud 1, any equivalent histories h' and
562 k', and any stage-game action profile a', there exists a repeated-game strategy

r+1 :+I

profile o and player j actionsa;" and @ such that

Ur(Coo-i) | (' ety alt) # UP (G om) L' el ). (563)
If (Hy, ..., H,) is a consistent collection of partitions under which h' and k'
are equivalent histories, then for any action profile a', (h', a') and (h', a'} are
equivalent,

Proof Fix a consistent collection H = (H;, ..., H,) and an action profile a’. Suppose

' and h* are equivalent, and the action profile a', strategy o, and player j actions
a:,“ and &}"’ satisfy (5.6.3), The strategy for every player k other than i and j that
plays according to o, except for playing aj in period ¢, is measurable with respect
to H. We now suppose that (h*, a') and (A', a') are not equivalent and derive a
contradiction. In particular, the player j strategy of playing a’ 1 and then playing
according to e, after any history R e Hi(h', @')), and mllerwwa playing aH'I
ifollowed by o) is then measurable with respect to H and from (5.6.3), aJ]ows us

to conclude that k' and h' are not equivalent (recall (5.6.1)), the contradiction,
n
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The conditions of this lemma preclude cases in which player 's behavior in periog
1 + | has no effect on player i's period ¢ continuation payoffs. If the absence of such
an effect. the set of payoff-relevant states in period r + | can be coarser than the set jp
period 1.2

We say that games satisfying the conditions of lemmas 5.6.1 and 5.6.2 are nop.
degenerate and hereafter restrict attention to such games.

5.6.3 Markov Equilibrium

There are typically many consistent partitions. The trivial partition, in which every
history constitutes an element, is automatically consistent. There is clearly nothing
to be gained in defining a Markov equilibrium to be measurable with respect to this
collection of partitions, because every strategy would then be Markov, Even if we
restrict atlention to nontrivial partitions, how do we know which one to pick?

The obvious response is to examine the maximally coarse consistent partition,
meaning a consistent partition that is coarser than any other consistent partition, ™
This will impose the strictest version of the condition that payoff-irrelevant events
should not matter, Does such a partition exist?

Proposition Suppose the game is nondegenerate (Le., satisfies the hypotheses of lemmas 5.6.1

56.1 and 5.6.2). A maximally coarse consistent partition exisis, If the stage game is
[inite, then this maximally coarse consistent partition is unigue.

Proof Let & be the set of all consistent partitions of histories. Endow this set with the
partial order < defined by Hl < H if H is a coarsening of FI. We show that there
exists a maximal element under this partial order, unique for finite games.

This argument proceeds in two steps. The first is to show that there exist
maximal elements. This in wm follows from Zom's lemma (Hrbacek and Jech
1984, p. 171}, if we can show that every chain (i.e., totally ordered subset) ¥ =
[Himy b | admits an upper bound, Let Hix denote the finest common coarsen-
ing (or meet) of ¥, that is, for each element h & 3, Hoy(h) = I._.-‘f=|H,:,,,]{f:}.
Because ¥ is a chain, Hjm(h) © Hypsry(h), and so Hy., is a partition that is
coarser than every partition in . It remains to show that H, .. is consistent, To
do this, suppose that two histories h' and h' are contained in a common element
of Hjagy. Then they must be contained in some common element of H,,, for some
m, and hence must satisfy (5.6.1). This ensures that H;., is consistent, and so
is an upper bound for the chain. Hence by Zom’s lemma, there is a maximally
coarse consistent partition.

The second step is to show that there is a unique maximal element for finite
stage games. To do this, it suffices to show that for any two consistent partitions,
their meet {i.e., finest common coarsening) is consistent, Let H and H be con-
sistent partitions, and let F be their meet. Suppose &' and h° are contained in a
single element of [l Because the stage game is finite, H' and H' are both finite
partitions. Then, by the definition of meet, there is a finite sequence of histories

29, Again, Maskin and Tirole (2001} provide an example.

30, A partition H' is a coarsening of another partition 3 if for all & € H there exists #' ¢ H such
that & © &'
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(R R, .. B ), ii*} such that each adjacent pair is contained in either the
same element of H' or the same element of H', and hence satisfy payoff equiva-
lence. But then ' and h* must be payoff equivalent, which suffices to conclude
that H is consistent.

=

Denote the maximally coarse consistent partition by H*.

pefinition A strategy profile o is a Markov strategy profile if it is measurable with respect
§6.1 to the maximally coarse consistent partition H". A strategy prafile is a Markov

equilibrium if it is a subgame-perfect equilibrium and it is Markov. Elements of
the partition H* are called Markov states or payoff-relevant histories.

No difficulty arises in finding a Markov equilibrium in a repeated gamle, be-!:aus:
one can always simply repeat the Nash equilibrium of the sl.nfge game, making history
completely irrelevant. This is a reflection of the fact that in a repeated game, thc
maximally coarse partition is the set of all histories. Indeed, all Markov equilibria
feature a Nash equilibrium of the stage game in every period. . ;

Repeated games have the additional property that every history gives rise to an
identical continuation game. As we noted in section 5.5.2, the Markov ::undthusm. on
strategies is commonly supplemented with the additional requirement thlal |de:rru¢_a!
continuation games feature identical continuation strategies. Such strategies are said
10 be stationary. A stationary Markov equilibria in a repeated game must feature the

-gpame Nash equilibrium in every period.
samh:ﬁcg«egrmally, iti::Itraightfcrnva:d to establish the existence of M.a:kov equilibria
in dynamic games with finite stage games and without private information. A backward
induction argument ensures that finite horizon versions of lhcgzum: have Mal.'knv
equilibria, and discounting ensures that the limit of such equilibria, as the horizon
approaches infinity, is a Markov equilibrium of the infinitely repeated game (Fudenberg

Levine 1983).

" MNow considit dynamic games G in the class described in section 3.3. '.I"ne set
§ induces a partition on the set of ex post histories in a natumll mzu_m:r, with two
ex post histories being equivalent under this partition if ﬂwylalre hnston:s of the same
length and end with the same state 5 € 5. Refer 1o this partition as H*. Because thv:
continuation Gs) is identical, regardless of the history terminating in 5. the following

is immediate:

y y 5
Proposition Suppose G is a dynamic game in the class described in section 5.5. Suppose H

562 is the partition of H with h € H¥ (') if h and ' are of the same .‘enga‘ff and both
result in the same state 5 € 5. Then, H is finer than H*. If for every pair of states
5.5 € 8, there is at least one player i for which ui(s. a) and u;(s', a) are not
affine transformations of one another; then F* = HS.

The outcomes w and @' of a public correlating device have no effect on players’
preferences and hence fail the condition that there exist a player i for whom u;j(e, @)
and u; (e, a) are not affine transformations of one another. 'I:hm‘efurc. the outcomes
of a public correlating device in a repeated game do not wnsnfutc fstates.

Markov equilibrium precludes the use of public correlation in repeated jgaIRes
and restricts the players in the prisoners’ dilemma 1o consistent shirking. Alternatively,
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much of the interest in repeated games focuses on non-Markov equilibria.’! In our view
the choice of an equilibrium is part of the construction of the model, Different choices,
including whether Markov or not, may be appropriate in different circumstances, With
the choice of equilibrium to be defended not within the confines of the model by in
terms of the sirategic interaction being modeled.

Remark Games of incomplete information The notion of Markov strategy also plavs ag
5.6.1 important role in incomplete information games, where the beliefs of uninformeg
players are often treated as Markov states (see, for example, section 18.4.4). 4
an intuitive level, this is the appropriate extension of the ideas in this section,
However, determining equivalence classes of histories that are payoff-equivalen
is now a significantly more subtle question. For example, because the inferences
that players draw from histories depend on the beliefs that players have about past
play, the equivalence classes now must satisfy a complicated fixed point property,
Maoreover, Markov equilibria (as just defined) need not exist, and this has led o
the notion of a weak Markov equilibrium in the literature on bargaining under
incomplete information (see, for example, Fudenberg, Levine, and Tirole, 1985),

We provide a simple example of a similar phenomenon in section 17.3.
+

| - Dynamic Games: Equilibrium

5.7.1 The Structure of Equilibria

This section explores some of the commeon ground between ordinary repeated games
and dynamic games. Recall that we assume either that the set of states 5 is finite, or that
' the transition function is deterministic. The proofs of the various propositions we offer
are straightforward rewritings of their counterparts for repeated games in chapter 2
and hence are omitted.
We say that strategy 4; is a one-shot deviation for player i from strategy a; if there
is a unique ex post history A such that

Gi(h') # ai(h").

It is then a straightforward modification of proposition 2.2.1, substituting ex post

: histories for histories and replacing payoffs with expected payoffs 1o account for the
potential randomness of the state transition function, to establish a one-shot deviation
principle for dynamic games:

; Proposition A strategy profile o is subgame perfect in a dvnamic game if and only if there are
5.7.1 no profitable one-shot deviations.

: Given a dynamic game, an automaton is (¥, w”, ¢, f), where # is the set of
automaton states, w': § — ¥ gives the initial automaton state as a function of the
initial game state, t : ¥ x A x § — ¥ isthe transition function giving the automaton

31. This contrast may nod be so stark, Maskin and Tirole (2001) show that most non-Markov
equilibria of repeated games are limits of Markov equilibria in nearby dynamic games.
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state in the next period as a function of the current automaton state, the r:l.frrem action
profile, and the next draw of the game state. Finally, f : ¥ — [1; &(A;) is the crulput.
function. {Note that this description agrees with remark 2.3.3 when 5 is the space of
realizations of the public correlating device.)

The initial automaton state is determined by the initial game state, through the
function w®. We will often be interested in the strategy induced by the automaton
beginning with an automaton state w. As in the case of repeated games, we write this
as (W, w, t, ). I

Let (i) denote the automaton state reached under the ex post history b’ € 2" =
(8 % A) = §. Hence, for a history |5} that identifies the initial game-state 5, we have

(5]} = wlis)

and for any ex post history &' = ("', a, 5),
(i) = t(r(h'""), a.5).

Given an ex post history i € #, let s{h') denote the current game state in P;_’.
Given a game state 5 € 5, the set of automaton states accessible in game state 5 15
¥is)={weW: e, w=rh)s=s()N>

Proposition Suppose the strategy profile o is described by the automaton (W, w1, : Fl. Then
572 o is a subgame-perfect equilibrium of the dynamic game if and only if for any

game state 5 € § and automaton state w accessible in game state 5, the strategy

profile induced by | %, w, T, ), is a Nash equilibrivm of the dynamic game G(5).

Our next task is to develop the counterpart for dynamic games of the recursive
methods for generating equilibria introduced in section 2.5 for repea.m:d games, Restrict
attention to finite sets of signals (with | 5| = m) and pure strategies. For each game
state s € S, and each state w € ¥ (s), associate the profile of values ¥, (w), defined by

Vo) = (1= Buts, flw)) +8)_ Ve(rlw, fw).s)gls" |5, flw)).

5e§

As is the case with repeated games, Vi(w) is the profile of expected payaffs when
beginning the game in game state 5 and automaton state w. Associate with each game
state 5 € S, and each state w € ¥(5), the function g¥"**(a} : A — R", where

K[J'w]{ﬂ'} 2= {1 . J}H'_;‘a} + & Z V_\J{T{H.P. a, Sr:l:]q‘.jr | E*G}'
eSS

i 0
Proposition Suppose the strategy profile o is described by the automaton (', w' t, f). Then
573 o is a subgame-perfect equilibrium if and only if for all game states 5 € 5 and
all w & #¥(5), flw) is a Nash equilibrium of the normal-form game with payoff
function g'* v,
32, Hence, (%, w", 7. f) is an automaton whose initial state is specified as a function of the game
state, (¥, wl(s), £, f) is the automaton whose initial state is given by w¥{s), and (%", w. T, )
is the automaton whose initial state 15 fixed ot an arbitrary w € ¥, N
13, Mote that w'iz) is thus accessible in game state 5, even if game state 5 does not have positive
probability umder gi- | @)



Lulrt #7 beasubsetof R", fors =1,.. ., m. We interpret this set as a set of feasibl,
payoffs in dynamic game Gis). We say that the pure action profile a® is PUrE-action
enforceable on (¥, .. #™) given s £ § if there exists a function ¥ : A x §
#LUL U™ with yia. s') € ¥ such that for all playersi and all a; € 4A;,

(1= 8uils,a*) +8 Y yila".s)g(s" | s,a")
5es
= (1 — 8y, a;,a;) + 8 E vilai.a’;, s)g(s" | s, ap.a”)).
el

'-.'E-’c: say that the payoff profile v € R" is pure-action decomposable on (%, . Wy
gweln § € § if there exists a pure action profile a* that is pure-action enforceable op
(¥.....%™) given 5, with the enforcing function y satisfying, for all players i,

v = (1 —du(s,a®) + 8 Z yila*, s"g(s’ | 5. a*).

rgh

A vector of payoff profiles v = (w(1), ..., vim)) € B", with v(s) interpreted ag
a payoll profile in game G(s), is pure-action decomposable on (¥, ..., Y if
for all 5 € §, vis) is purc-action decomposable on (#71, ..., #™) given 5. Finally,
(WL ..., W™ s pure-action self-generating if every vector of payoff profiles 'u'|r
[les #7 is pure-action decomposable on (#', ..., ¥™), We then have:¥

Proposition Any self-generating set of pavoffs (¥, .. #™) is a sel af pure-sirategy

3.74  subgame-perfect equilibrium pavoffs,

As before, we have the corollary:
Corollary The ser F.‘#’" ..... HR) of pure-strategy subgame-perfect equilibrium payoff
5.7.1  profiles is the largest pure-action self-generating collection (%!, #™).

Remark Repeated games with random states For these games (see remark 5.5.1), the sel

3.7.1  of ex ante feasible payoffs is independent of last period's state and action profile.
Consequently, it is simpler to work with ex ante continuations in the notions of
enforceability, decomposability, and pure-action self-generation. A pure action
profile @* is pure-action enforceable in state 5 € § on # © B" if there exists a
function y : A — ¥ with such that for all players i and all a; € 4;,

(1= 8luj(s, a®) + 8y (a*) 2 (1 - Buy(s, ai, a”;) + Syl a*,).

The ex post payoff profile v* & R" is pure-action decomposable in state s on ¥ if
there exists a pure-action profile a* that is pure-action enforceable in 5 on % with
the enforcing function p satisfying v* = (1 — &)u(s.a*) + Sy (a*). An ex ante
payoff profile v € R is pure-action decomposable on % if there exist ex post
payoffs {v* 15 € §}, v* pure-action decomposable in 5 on %, such that v =
3", v'q(s). Finally, #" is pure-action self-generating if every payolf profile in ¥
is pure-action decomposable on ¥, As usual, any self-generating set of ex ante

34, See section 9.7 on games of symmetric incomplete information (in particuls iti
and lemma 9.7.1) for an application. i e

LB

payoffs is a set of subgame-perfect equilibrium ex ante payoffs, with the set of
subgame-perfect equilibrium ex ante payoffs being the largest such set.

Section 6.3 analyzes a repeated game with random states in which players have
an opportunity to insure one another against endowment shocks. Interestingly, this
game is an example in which the efficient symmetric equilibrium outcome is some-
times necessarily nonstationary. It is no surprise that the equilibrium itself might
not be stationary, that is, that efficiency might call for nontrivial intertemporal
incentives and their attendant punishments. However, we have the stronger result

that efficiency cannot be obtained with a stationary-outcome equilibrium.
+

5.7.2 A Folk Theorem

This section presents a folk theorem for dynamic games. We assume that the action

spaces and the set of states are finite.
Lei T be the set of pure strategies in the dynamic game and let £ be the set of

pure Markov strategies. For any o € I, let

[+ =)
Uta) = E° [u — 85y suls, u’J]

Tl

be the expected payoff profile under strategy o, given discount factor 4. The expectation
accounts not only for the possibility of private randomization and public correlation
but also for randomness in state transitions, including the determination of the initial
state. We let

o

UJ{G | ﬁ]’) - Eu’..ﬁ'[{l -'EJZ'EI_'”'::GT~3T11

T
be the analogous expectation conditioned on having observed the history h', where
continuation play is given by @y As a special case of this, we have the expected
payoff U/%(a | 5), which conditions on the initial state realization 5.

Let

Fify=[veR" 3o & M ot U¥(o | 5) = vis) ¥s].

This is our counterpart of the set of payoff profiles produced by pure stage-game actions
in a repeated game. There are two differences here. First, we identify functions that
map from initial states to expected payoff profiles. Second, we now waork directly with
the collection of repeated-game payoffs rather than with stage-game payoffs because
we have no single underlying stage game. In doing so, we have restricted attention only
to payoffs produced by pure Markov strategies. We comment shortly on the reasons
for doing so, and in the penultimate paragraph of this section on the sense in which
this assumption is not restrictive.
We et

F =€!i“-% F(8). (5.7.1)
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This is our candidate for the set of feasible pure-strategy pavoffs available o Patien
players. We similarly require a notion of minmax payoffs, which we define contingey
on the current state,

v is) = inf sup Ul(a | 5)

TiELiml gy g E;

with

vi(s) = lim y}(s). (5.1
Dutta (1995, lemma 2, lemma 4) shows that the limits in (3.7.1) and (5.7.2) exist, The
restriction to Markov strategies in defining . (5) is useful here, as it is relativel
to show that the payoffs to a pure Markov strategy,
actions and states, are continuous as § — 1.

Finally, we say that the collection of pure strategies (!, .
specific punishment for v if the limits U{a' | 5) = lims, £r%
following hold for all 5, &, and 5" in 5

¥ easy
in the presence of finite sets of

.- @"] is a player-
(o' | 5) exist and the

Usta’ | 5") < vy(x) (573

and

vi(s") < Uila' | 8') < Uita! | 5). (5.7.4)
We do not require the player-specific punishments to be Markov, The inequalities
in conditions for player-specific punishments are required to hold uniformly across
states. This imposes a tremendous amount of structure on the payoffs involved in these

punishments. We comment in the final paragraph of this section on sufficient conditions
for the existence of such punishments.

We then have the pure-strategy folk theorem.

Proposition Let v € . be strictly individually rational, in the sense that for all plavers i and
5.7.5  pairs of states 5 and 5" we have

vils) = v;(s"),

let v admir a player specific punishment, and suppose that the plavers have access
fo a public correlating device. Then, for any & = 0, there exists § such that for all

8 € {8, 1}, there exists a subgame-perfect equilibrium o whose pavoffs Ulea | 5)
are within £ of v(s) for all 5 5.

The proof of this praposition follows lines that are familiar from proposition 3.4.1
for repeated games. The additional complication introduced by the dynamic game is
that there may now be two reasons to deviate from an equilibrium strategy. One is to
obtain a higher current payoff. The other, not found in repeated games, is to affect
the transitions of the state. In addition, this latter incentive potentially becomes more
powerful as the players become more patient, and hence the benefits of affecting the
future state become more important. We describe the basic structure of the proof. Dutta
(1995} can be consulied for more details.
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Proof We fix a sequence of values of & approaching 1 and corresponding strategy profiles
a (#) with the properties that
lim Ub(a(8) | 5) = vis).
S
This sequence allows us to approach the desired equilibrium payoffs. Moreover,

Dutta (1995, proposition 3) shows that there exists a sirategy profile & such th;u
for any i = 0, there exists an integer L(1) such that forall T = Lin) and s € §,

gk = F n
E&'f}— Zﬂ'dl’r.di} _{- g'{f}+ E.
=0

and hence a value §; = 1 such that for § € (d, 1),

T=1
E&'J% D uits’ a"y =wvils) + .
=0

Let (o', ..., ") be the player-specific punishment for v. Conditions [?.1.3}
and (5.7.4) ensure that we can fix §2 € (&, 1), 1 = ma.x“;rs v (5) :nd n sufficiently
small that, for all & € (8. 1), all i, and for any states s, 5" and 57,

vilsl+n=v+n < UMe' |15 < v (s")

am . a e a
Uf[:r’ | 5) = (e’ | 5).

We now note that we can assume, for each player i, that &mlpiayer-spaﬁlﬁ: :“:v:r
ishment o' has the property that there exists a IEngi:tl. ﬂf:“m T:-# such tha :
eachr.t' =0, T;, 2T;, . ... and for all ex ante histories h anlcl h. a:;i .v.tamsmi
o' \nes) = &' |y - Henee, ! has a cyclical structure, erasing its smri,'
starting from the beginning every T; periods.* w.t can :.ﬂso assu;ic v:.rhm 1-,:-.3 ;pff:r
vides a payoff to player i that is independent ot’. its initial state. [
retain these properties for the player specific punishments. o g e
The strategy profile now mimics that used 1o prove propns.morlu 34.1, i
responding result for repeated games. It begins with play t'::ﬂ.!owmg lhed:vimﬁ
profile o (4); any deviation by player from e (&), and mdaed sm:.l: 5o
from any subsequent equilibrium prescription other than deviations from being

i i ity in (5.7.3) and (5.7.4) holds by
’ have this property. Because each inequality in {
35, Sui;::::mdlms nml.. we mrdll:lunl';.' choose T) sufficiently large ﬂ-l_:[ the average Hyumr:
::w smm;g}- pl.'l:l-l'llv.".. over its first T peniods is willh_lu al Ieas‘t EI:,.: uf its pa:.ro;l“?r;v:ur::‘nm s
w by repeatedly playing the first Tj periods of o7, beginning eac
::n:;mm: n:w ﬁi:alcg}'};l; the desired cyclic structure and satisfies (3.7.3) and (5.7.4). Dutta
{1995, section 6.2) provides details, . .
36, 5 se this is not the case. Let s maximize Uia’ | 5). Define a new strategy as :.:IIE:; 2
. HTJ. riod 0, T:, 2T;, . .., conduct a state-contingent public cnn-ghmm that mixes se[: songill
:ﬁi ap;;mmgyl 1.1;.11 maximizes player i's repeated-game payoff, with 1h: cun#latm:umm dot
uate the continuation payeft for cach state 5" with Li{e" | 5). The uniform ineq
:.Jlawr-spoclﬁc punishments ensure this is possible.
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minmaxed, which are ignored, prompts the first L periods of the corresponding
minmax strategy &' (). followed by the play of the player-specific punishment ol

Owr task now is to show that these strategies constitute a subgame-perfect equi.
librium, given the freedom to restrict attention to large discount factors and chooge
L = L{n). As usval, let M and m be the maximum and minimum slage-game
payofls,

The condition for deviations from the equilibrium path to be unprofitable is
that, for any state s € § {(suppressing the dependence of strategics on &)

(1=8)M + 801 — 35w + m + Ul e’) < Ulte | 9,

which, as § converges to one for fixed £, becomes Ui’} < v;(x), which haolds
with strict inequality by virtue of our assumption that v admits player-specific
punishments. There is then a value & € [d;, 1) such that this constraint holds for
any § € (83, 1) and L = L),

For player j to be unwilling to deviate while minmaxing i, the condition is

(1= HM +5(1 =84, + ) + 81Uy = (1 - 88ym + 8L U ().
Rewrnite this condition as
(1= 8)M + (1 = 85)B(w; + n) — m) + 88U ) — U¥ (0" = 0,

The term 16{,-’?{0*’} = UJ‘,‘ (o')] convergesto Uj(a/) — Uyla’) < Oasé — 1. We
can then find a value &4 € |43, 1) and an increasing function Li§) (= L{n)) such
that this constraint holds forany § & (&4, 1) and the associated £.(8), and such tha
§8) < | — y, for some y > 0. We hereafter take L to be given by L(8).

Now consider the postminmaxing rewards. For player i to be willing to play
a', a sufficient condition is that for any ex post history &' under which current
play is governed by o',

(1= 8)M +8(1 — 38 @ + gy + 52 U3 ey = UB (e | ).

This inequality is not obvious. The difficulty here is that we cannot exclude the
possibility that U (o') = U (o | k). There is no reason to believe that player i's
payoff from strategy o' is constant across time or states. Should player i find him-
self at an ex post history (", 5) in which this strategy profile gives a particularly
low payoff, i may find it optimal to deviate, enduring the resulting minmaxing to
return to the relatively high payoff of beginning o° from the beginning. This is the
incentive to deviate to affect the state that does not appear in an ordinary repeated
game. In addition, this incentive seemingly only becomes stronger as the player
gets more patient, and hence the intervening minmaxing becomes less costly,

A similar issuc arises in the proof of proposition 3.8.1, the folk theorem for
repeated games without public correlation, where we faced the fact that the deter-
ministic sequences of payoffs designed to converge to a target payoff may feature
continuation values that differ from the target. In the case of proposition 3.8.1,

w
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the response involved a careful balancing of the relative sizes of § and L. Here,
we can use the cyclical nature of the strategy o' to rewrite this constraint as

(1= 8)M +8(1 — 8-y + ) + sH9H Ul 0y < (1 — aTym + 5T US (o),

where (1 — 8% )m is a lower bound on player i 's payoff from o/ over T} periods,
and then the strategy reverts to payoff Uf{n 1y, The key to ensuri ng this inequality
is satisfied is to note that T; is fixed as part of the specification of . As a result,
limg— 8% = 1 while 82! remains hounded away from 1.

A similar argument establishes that a sufficiently patient player i has no incen-
tive to deviate when in the middle of strategy o, This argument benefits from the
fact that a deviation trades a single-period gain for L periods of being minmaxed
followed by a return to the less attractive payoff Uf (o). Letting &5 € (34, 1) be
the bound on the discount factor to emerge from these two arguments, these strate-
gies constitute a subgame-perfect equilibrium for all § € (ds, 1).

||

We have worked throughout with pure strategies and with pure Markov strategies
when defining feasible payoffs. Notice first that these are pure strategies in the dynamic
game. We are thus not restricting ourselves to the set of payoffs that can be achieved
in pure stage-game actions. This makes the pure strategy restriction less severe than it
may first appear. In addition, any feasible payoff can be achieved by publicly mixing
over pure Markov strategies (Dutta 1995, lemma 1), so that the Markov restriction is
also not restrictive in the presence of public correlation (which we used in modifying
the player-specific punishments in the proof).

Another aspect of this proposition can be more directly traced to the dynamic
structure of the game. We have worked with a function v that specifies a payolf profile
for each state. Suppose instead we defined, for each s = §,

Fid,s)={veR":30 € T¥ st. U(o | 5) = v},

the set of feasible payoffs {in pure Markov strategies) given initial state s, with . F(s) =
limg— (8, 5). Let us say that a stochastic game is communicating if for any pair of
states s and 5', there is a strategy o and a time ¢ such that if the game begins in state
§, there is positive probability under strategy o that the game is in state s* in period ¢,
Dutta (1995, lemma 12) shows that in communicating games, .% (5) is independent of
&, If the game communicates independently of the actions of player i, for each ¢, then
minmax values will also be independent of the state. In this case, we can formulate
the folk theorem for stochastic games in terms of payoff profiles v € B” and minmax
profiles u; that do not depend on the initial state. In addition, full dimensionality of
the convex hull of # then suffices for the existence of player-specific punishments for
interior v, We can establish a similar result in games in which # (8, 5} depends on s
{and hence which are not communicating), in terms of payoffs that do not depend on
the initial state by concentrating on those payoffs in the set Mees F(5).



